skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rollins, Kyle M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Investigating the role of sand and fines content and in situ drainage conditions in governing the hydraulic conductivity of gravelly deposits is highly important to characterize the liquefaction potential of gravelly soil. In this study, a variation of hydraulic conductivity with sand content has been empirically obtained based on the existing gravel liquefaction case histories. It is found that the hydraulic conductivity of a soil matrix with more than 20%–30% sand content by mass is low enough to cause liquefaction without any impervious confining layer. In addition, a numerical study has been performed using the commercial software FEQDrain to study pore pressure generation in gravelly soil at various relative densities and hydraulic conductivities with and without an impermeable cap layer when subjected to various earthquake loadings. For both unconfined and confined condition, excess pore pressure ratios consistently increase with a decrease in hydraulic conductivity ( k) and relative density ( Dr). The excess pore pressure ratio is correlated with hydraulic conductivity, soil compressibility, and cyclic stress ratio (CSR). For the confined condition, pore pressure in the gravel layer is primarily governed by the overlying cap layer and even a sandy cap layer instead of a highly impervious clay layer can cause liquefaction. 
    more » « less
  2. null (Ed.)